On weakly clean and weakly exchange rings having the strong property

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Weakly Clean and Weakly Exchange Rings Having the Strong Property

We define two classes of rings calling them weakly clean rings and weakly exchange rings both equipped with the strong property. Although the classes of weakly clean rings and weakly exchange rings are different, their two proper subclasses above do coincide. This extends results due to W. Chen (Commun. Algebra, 2006) and Chin-Qua (Acta Math. Hungar., 2011). We also completely characterize stro...

متن کامل

WEAKLY g(x)-CLEAN RINGS

A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...

متن کامل

On Ideals Which Have the Weakly Insertion of Factors Property

A one-sided ideal of a ring has the insertion of factors property (or simply, IFP) if implies r for . We say a one-sided ideal of has the weakly IFP if for each , implies , for some non-negative integer . We give some examples of ideals which have the weakly IFP but have not the IFP. Connections between ideals of which have the IFP and related ideals of some ring extensions a...

متن کامل

Weakly left localizable rings

A new class of rings, the class of weakly left localizable rings, is introduced. A ring R is called weakly left localizable if each non-nilpotent element of R is invertible in some left localization SR of the ring R. Explicit criteria are given for a ring to be a weakly left localizable ring provided the ring has only finitely many maximal left denominator sets (eg, this is the case if a ring h...

متن کامل

On weakly e*-open and weakly e*-closed Functions

The aim of this paper is to introduce and study two new classes of functions called weakly $e^{*}$-open functions and weakly $e^{*}$-closed functions via the concept of $e^{*}$-open set defined by Ekici cite{erd1}. The notions of weakly $e^{*}$-open and weakly $e^{*}$-closed functions are weaker than the notions of weakly $beta$-open and weakly $beta$-closed functions defined by Caldas and Nava...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Publications de l'Institut Mathematique

سال: 2017

ISSN: 0350-1302,1820-7405

DOI: 10.2298/pim1715135d